STEM Chem Semester 2 Unit1 Test Review ### ALT 1: I can describe the structure of an atom AST1.4: I can describe how models of the structure of atoms have changed over time. AST 1.7: I can describe the electron configurations of a given atom AST 1.8: I can describe the process by which an atom can emit light. AST 1.9: I can explain why different atoms have unique emission/absorption spectra. # ALT 2: I can describe the organization of the Periodic Table, find patterns, and predict properties of elements. AST 2.5: I can identify the groups/regions of the Periodic Table with common characteristics, and can predict properties of elements. AST 2.6: I can explain the trends in the Periodic Table, including ionization energy and electronegativity. ### ALT 5: I can describe how and why atoms form bonds. AST 5.4: I can compare the characteristics of ionic, covalent, and metallic compounds. AST 5.5: I can use models to explain the role of valence electrons in bond formation. AST 5.6: I can describe the relationship between electronegativity and bond type. AST 5.7: I can use the VESPR model to explain molecular geometry. AST 5.8: I can compare/contrast the different types of intermolecular forces AST 5.9: I can use molecular structure to predict intermolecular forces. ### Determine the identity of the following elements: 1) I am a transition metal with the smallest atomic radius in my group, I have 6 valence electrons. 2) I am a non-metal and I belong to the halogen family. I am not the largest or smallest atom in my group, my first ionization energy is greater than that of iodine. I am not a gas at room temperature. 3) I am a main group element with 3 p-orbital electrons in my valence shell. I have a lower first ionization energy than arsenic and I am not the larges atom in my group. 4) The radius of my most common ion is smaller than my atomic radius, my valence shell contains only one full s-orbital of electrons. I have a lower first ionization energy than calcium and a smaller atomic radius than barium. Sr 5) The radius of my most common ion is larger than my atomic radius, I have 4 p-orbital electrons in my valence shell. I have a higher first ionization energy than tellurium and I am the smallest atom in my group. 32. Describe the process by which an atom an emit light 33. Why do different elements have unique emission spectra? # Electron Configuration Problem Set | | | organism
Tele | | | | 1 () ()
1 () | 12 33 | i v ing | न स्थ | <u>.</u> | : 505 \.
1. \ \ 3 | |------------|-----------|------------------|----------|---|-------|--------------------|--------------------------------------|-----------|----------------|--------------------------------------|------------------------| | 1 5
1 1 | | | □ | | | | | Magnesium | | PW. | н | | | | | Bromine | | F | | | 19 | | | Element | | | | | <u> </u> | | Þ | | | | | . s. | | | | | | | | | | | Ĭ | | | , | | 1, | | | | | | 1,79 | | | | | # of e | | , | 32 | 3 5 | | | | 47 | | | | ∞ | g | | , | | | | | | | | | 10 mm | | · · · · · · | | | 13.5 | | 1.7 | 18 | 3.4.4 | | | | | | V 4 | | 7 4
• 7 | | | | 1s'2 s'2p | | | | | 3 | | Н | | | | | | 872 | | | | | 8,2 | | ğ | | | | | | 믹 | | | | | 1s'2 s'2p'3 s' | | Electron Configuration | | | | | | | | | | | _ v_ | | | | ķ | | | | | | , | | | | | Ò | | | | | | | | | | | | | lgi) | | | , , | | | | | T | A 7 | | | | ıraı | | · . | | | | | | | | | | 6.65 | тог | | | | | | | | | | | | | | | | · · · · · | | | | · · · | | | | | | | | Ċ | | | | | | | | | | 4 | Previous
Nobel Gas | | | Ar | | Ar | | | | | Ne | | He | ğ @ | | | | | " | | | | | G | | C | Previous
Nobel Gas | | | | | S | | | | | | | | 8 S | | : - ' | | | | | | | [Ar] 4s ² 3d ⁸ | | | H | <u> </u> | | . j | | | | | | | · <u>5</u> | | | . <u>e</u> | 15 | | | | | | | | | \$ | | | 22 | | | | | | | | | | 3 d % | | | [He] 2s ² 2p ⁴ | , <u>B</u> | | | | | | | | | | | | ٦ | ∵ Z | | | | | | | | | | | | | Shorthand Notation | | | | | A | | | | | | | | 음 | | | 10.1 | 7 | | | | | | | | | | | | | [Ne] <u>1</u> | | | | | | | | <u>.</u> | | | | | 3g ₹ | | | | | | | | 25/₹ | | | - | | - | | | | | | | | He 14 14 1
2s 2 | 6 | | | | ώ ⊢ | | No. | | | | | | 2 _D | | | | | ↑
3p | | | | 13.5 | | | | 9∐ | 핅 | | | | | | | | | | | | | <u>ita</u> | | | | | | | 1.0 | | | | | | ᄓ | | | | | | | | | | | | | 89 | | 1 | | | | 23 | | | | | | | Orbital Diagram | | | | | | | | · [| | | | | | | - | | | | | | | | | | | | | 1 | | | | | | | | | | | * | | 1 | | | | | | | | | | | | | L | | | 1 AP 1 | | | | | | 1 | | | | | | | | * | | | | | | | | ## **POLARITY OF MOLECULES** Name_ Determine whether the following molecules are polar or nonpolar. A partial charges | | are being at trembergit (1 1 at 11 ac Orbit Mc) | |---|---| | 1. No polar | 7. HF +> Polar | | 2. H ₂ 0
ST
Polar
17
8+ 5 | 8. CH3OH H-C-TOZHST 155 | | 3. CO ₂ 10=C=0 1000 | 9. H ₂ S AD1 Polar | | 4. NH3 Startst | 10. l ₂ i I - I' ron polar | | 5. CH, (-1) 1 / C -1-1 1 / C -1-1 | 11. CHCI, LI Polar Li Li Li Li Li Li Li Li Li L | | 6. SO3 | 12. O ₂ |