Sunset High School

Chemistry

Name: Date: Period:

Worksheet: Scientific Notation

Consider:

$$10^1 = 10$$

 $10^2 = 10 \times 10 = 100$

 $10^3 = 10 \times 10 \times 10 = 1000$

When you multiply a decimal by 10,

you move the decimal point one place

to the right $(2.34 \times 10 = 23.4)$

Consider:

10⁻¹ = 1/10 or 1 divided by 10

 $10^{-2} = 1/100$ or 1 divided by 10×10

When you divide a decimal by 10, you move the decimal point one place to

the left (23.4 divided by 10 = 2.34)

In scientific notation, 1×10^2 means multiplication:

1 x 10⁻² means division:

 $1 \times 10 \times 10 = 100$

1 divided by $10 \times 10 = 0.01$

Examples:

 $3 \times 10^1 = 30$

 $5.2 \times 10^2 = 520$

 $2.4 \times 10^{-1} = 0.24$

 $3.2 \times 10^{-2} = 0.032$

Now consider changing decimal numbers to scientific notation.

If you move the decimal place to the left, you are setting up a multiplication factor as follows:

 $265840 = 2.6584 \times 10^{5}$

To get back to the original number, move the decimal

point to the right five spaces.

If you move the decimal place to the right, you are setting up a division factor as follows:

 $0.000465 = 4.65 \times 10^{-4}$

To get back to the original number, move the decimal

Convert to decimals:

point to the left four spaces.

Examples: $0.0078 = 7.8 \times 10^{-3}$

 $2689 = 2.689 \times 10^3$

PRACTICE:

Convert to scientific notation:

1. 0.0067

1. 5.78×10^{-8}

2, 4500

 $2.7.8 \times 10^4$

3. 0.00000059

3. 9.13 x 10⁻²

4. 67.89

4. 3.5×10^4

5. 483000000

5. 7×10^{-3}

6. 456.9

 6.9×10^3