"Concentrate" On These

1) Calculate the molarity of each of these solutions:

a) 5.623 grams of NaHCO3 is dissolved in enough water to make 250.0 ml of solution. 5.623g (| mole) = 0.066934 b) 184.6 mg of K₂Cr₂O₇ is dissolved in enough water to make 500.0 ml of solution. 4

184.6 mg (199) 194.2 = 6.2746×10 mol 6.2746×10 = 0.001255M

2) Describe how you would prepare 1.0 liter of 0.20 Molar NaIO₃ solution from solid NaIO₃.

0.20 = X 0.20mol (197.99) At the scale, 4.0×10'g of NaIO₃ would be placed by water that would be placed by water and enough water added to make a final added to ma 3) How would you prepare 3.20 liters of a 0.50 molar H₂SO₄ solution from concentrated (18.0 molar) H_2SO_4 ? $I_8.0(x) = 0.50(3.20)$ 89mL of the 18.0 M stock solution would be placed into an empty contained when enough water solution of ethanol (C₂H₅OH) in water is prepared by dissolving 10.0 ml of ethanol (density: 0.79 g/ml) in enough water to make 250.0 ml of solution. What is the molarity of this ethanol in this solution? 0.171485 mol 7.99 (mol) = 0.171485 = 0.68594 5) A solution is prepared by dissolving 10.8 grams of ammonium sulfate in enough water to make 100.0 ml of stock solution. A 10.0 ml sample of this stock solution is added to 50.0 ml of water. Calculate the (0.817290)(.01) = x(.060) x = 0.134215concentration of ammonium sulfate in this final solution. 10.89 (| mol) = 0.081729 mol = 0.817290 6) Calculate the concentration of each ion present in each of the following ionic solutions 7) 0.150 grams of of the ionic compound Na₂CO₃ is dissolved in H₂O to give 1.0 liter solution. What is the concentration of the Na⁺ ion in the solution?

(C1-1] = .0187M the concentration of the Na⁺ ion in the solution? $0.1509 \left(\frac{105,99}{105,99}\right) = 0.001415 \text{ mol} \left(\frac{2001 \text{ Nat}}{1001 \text{ Natos}}\right) = 0.0028 \text{ Mof Nat}$ $\left(\frac{105,99}{105,99}\right) = 0.001415 \text{ mol} \left(\frac{2001 \text{ Natos}}{105,99}\right) = 0.0028 \text{ Mof Nat}$.8) A solution is prepared by dissolving 0.5842 grams of oxalic acid (H₂C₂O₄) in enough water to make 100.0 ml of solution. A 10.00 ml aliquot (portion) of this solution is then diluted to a final volume of (0.064885)(.01)=M2(.250) (M2=0.0026 M) 250 ml. What is the molarity of the final oxalic acid solution? 0.58429 (1mol)= 0.0064885 = 0.064885

9) How many grams of Pb(NO₃)₂ would be recovered from 756 ml of a 0.651 molar solution of 0.492156 mol (331.22 9 $Pb(NO_3)_2$ if all the water was removed?

MORE PROBLEMS!

Cey

- Calculate the volume of solution required in each of the following:
 - a. 1.00 mole of sulfuric acid (H₂SO₄) from a 6.00 M solution

$$6.00 = \frac{1.00}{X}$$
 $X = 0.16666$ $0.167L$

b. 5.00 g of sodium bromide from a 0.100 M solution

NaBr 5.00 g of sodium bromide from a 0.100 M solution
$$5.00g \left(\frac{1 \text{ mol}}{58.44g}\right) = 0.085557 \text{ mol} 0.100 = \frac{0.085557}{2} \times 0.85557 \text{ mol} 0.100 = \frac{0.085557}{2} \times 0.85567 \text{ mol} 0.8567 \text{ mol$$

$$\left(\frac{10.989}{10.989}\right) = 6.89$$

$$1.4 = \frac{6.89313 \times 10^{-5}}{2}$$

$$3.0 = \frac{3.50}{X}$$

$$3.0 = \frac{3.50}{X} \qquad X = 1.1666$$

$$X = 1.17 L$$

- 2. Calculate the number of grams of solute necessary to prepare the following solutions.
 - a. 500 ml of a 0.10 M sodium hydroxide solution

$$0.10 = \frac{x}{500} x =$$

Onlo =
$$\frac{x}{500}$$
 $x = 0.5 \text{ mole}$ 0.5 mol $\left(\frac{39.9989}{1 \text{ mol}}\right) = 1.999$

$$0.020 = \frac{X}{1250}$$

b. 250 ml of a 0.020 M calcium chloride solution
$$CaCl_2 \quad 0.020 = \frac{X}{.250} \qquad 0.665 \, mol \left(\frac{110.98 \, g}{.1 \, mol}\right) = 0.5549$$

$$X = .005 \, mol \qquad 0.559$$

3. What volume of 12.0 M HCl would you need to make 3.80 liters of 1.65 M HCl?

$$M_1V_1 = M_2V_2$$
(12.0) $V_1 = (1.65)($

$$(12.0)V_1 = (1.65)(3.80)$$

- $(12.0)V_1 = (1.65)(3.80)$ $(V_1 = 0.523L)$
- 4. You've just made 2.0 liters of cherry Kool-aid that has a dextrose (C₆H₁₂O₆) concentration of 0.35 molar. How many grams of sugar (dextrose) would you have to add to the Kool-aid to increase the dextrose concentration to 0.50 molar. (assume no change in volume)

$$0.35 = \frac{x}{2.0}$$

$$0.50 = \frac{X}{20}$$

 $0.35 = \frac{\chi}{2.0}$ $\chi = 0.70 \text{ mol}$ $\chi = 1 \text{ mol}$ $0.50 = \frac{\chi}{2.0}$ $\chi = 1 \text{ mol}$ $0.30 \text{ mol} \left(\frac{180.1563}{1 \text{ mol}}\right) = 54.0468$ 1 - 0.75 molar HCl solution from a stock solution with a molarity of 12.1.molarity of 12.1.

25 liters of 0.75 molar HCl solution from a stock solution with
$$M_1 V_1 = M_2 V_2$$

$$(12.1)V_1 = (0.75)(1.25)$$

$$V_1 = 0.0774/79$$

$$V_1 = 0.0775L$$