Classification of Matter

Classification of Matter

• How do we make sense of all the types of material in the world?

- Properties of Materials
 - Describe materials by listing their properties
 - Chemical properties vs Physical properties
 - Intensive vs. Extensive properties

Properties of Matter

- Chemistry is the study of matter
- Matter is classified according to its properties. There are two types:
 - A physical property can be observed without changing the identity of the substance. Ex. Are color, temperature, density, etc.
 - A chemical property describes change of a substance to form other substances – flammability, biodegradability, etc.

Properties of Matter

There are two types of physical properties:

- 1. An extensive property depends on the amount of substance
- 2. An intensive property is independent of the amount

Extensive Properties	Volume	76.2 mL	6.64 mL		
	Mass	76 g	6.5 g		
Both Substances are water!!					
Intensive Properties	Density	0.999 g/mL	0.999 g/mL		
	Temp	20 °C	20 °C		

Intensive vs. Extensive Properties

• Intensive properties can be used to identify unknown substances

For Example:

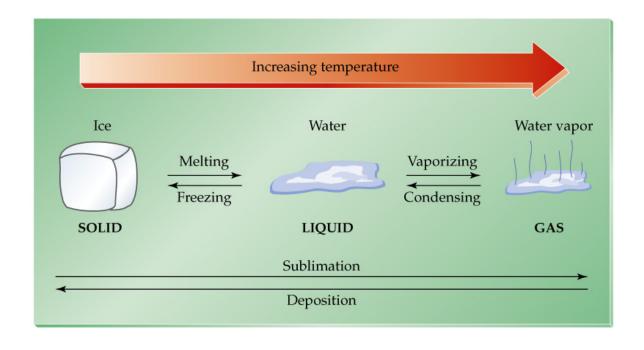
A glass container weighs 48.462 g. A sample of 4.00 mL of a substance is added, and the container plus the substance weigh 54.51 g. Calculate the density of substance.

"The number of brain cells that refuse to learn a new concept is a measure of your density."

Melinda Hutson

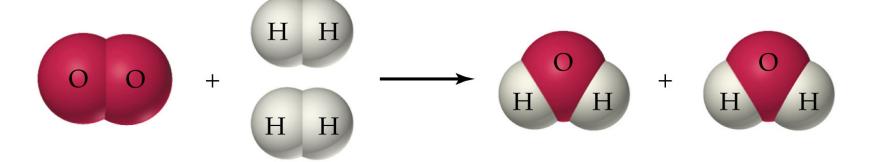
Geology, PCC

Physical & Chemical Changes


- In a physical process, the identity of a substance doesn't change.
- In a chemical process, a substance is transformed into a different substance.

If measuring a property changes the substance (i.e., flammability, etc), then it is a chemical property.

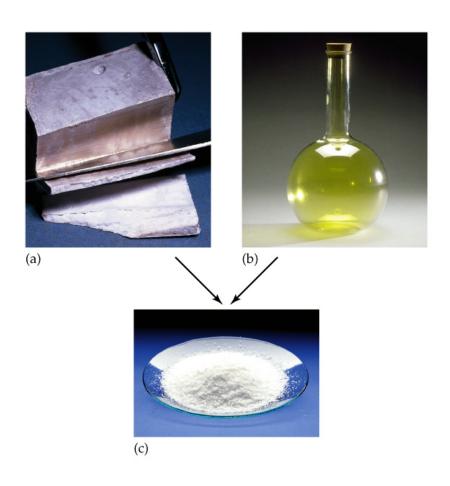
TABLE 1.2	Some Examples of Physical and Chemical Properties			
Physical Pro	perties	Chemical Properties		
Temperature	Amount	Rusting (of iron)		
Color	Odor	Combustion (of gasoline)		
Melting point	Solubility	Tarnishing (of silver)		
Electrical cond	luctivity Hardness	Hardening (of cement)		


Physical Change

• Whether it is in solid form, liquid or gas...it is all still water!

Chemical Change

$$O_2 + 2 H_2 \longrightarrow 2 H_2O$$



Two oxygen atoms

Four hydrogen atoms

Two water molecules (H₂O, a chemical compound)

Chemical Change

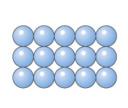
Classifying Properties

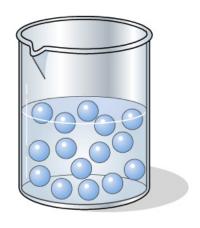
Which of the following is an extensive property?
 volume melting point color hardness temp

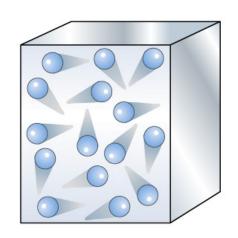
• Which of the following is an intensive chemical property of a box of raisins?

grams per serving total grams total # of raisins calories per serving total calories

Which of the following is an extensive property of a bubble of air?
 radius density % oxygen temp


Classifying Properties


• Which of the following is a physical property?


hardness melting pt color volume temp

• Which of the following is a chemical property of a slice of chocolate cake?

volume temp color mass dietary calories

SOLID

High density
Hard to expand/compress
Rigid shape

LIQUID

High density
Hard to expand/compress
Takes shape of container

GAS

Low density
Easy to expand/compress
Fills container

Phase Changes

 A phase is a region with homogeneous (uniform) properties

• Conversions between states are called "phase transitions" or "changes of state"

• Changes in temp, pressure or composition can result in changes of state.

Physical or Chemical Changes?

- Water is heated in a microwave
- Water freezes to ice
- Rust forms on an iron nail
- A gas is compressed with a pump
- A lump of coal burns
- Table salt is dissolved in water

Classification of Matter

All matter is either a pure substance or a mixture.

 A pure substance has a fixed composition and distinct properties

• A mixture consists of two or more pure substances which retain their chemical identities.

Classification of Matter

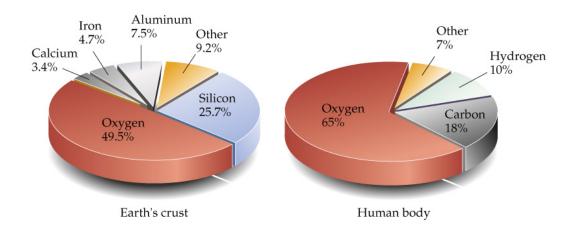
Pure substance: characteristics

• The percent of each component always the same from sample to sample

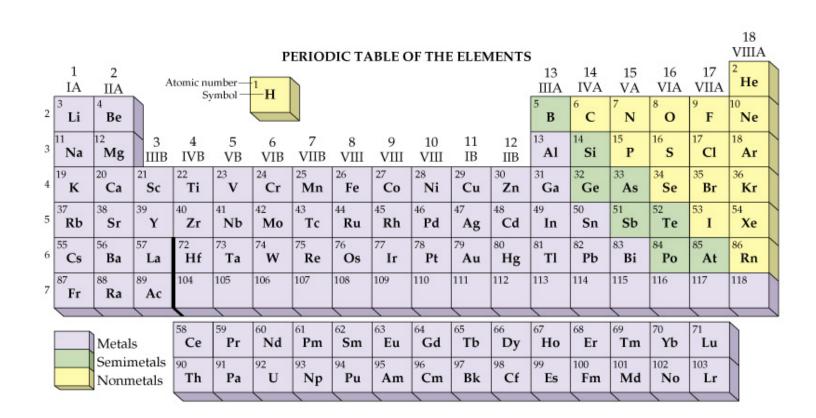
Example: water is always 11.2% hydrogen and 88.8% oxygen – no matter where you get it!

• Samples melt or boil at a characteristic temperature (is this intrinsic or extrinsic?)

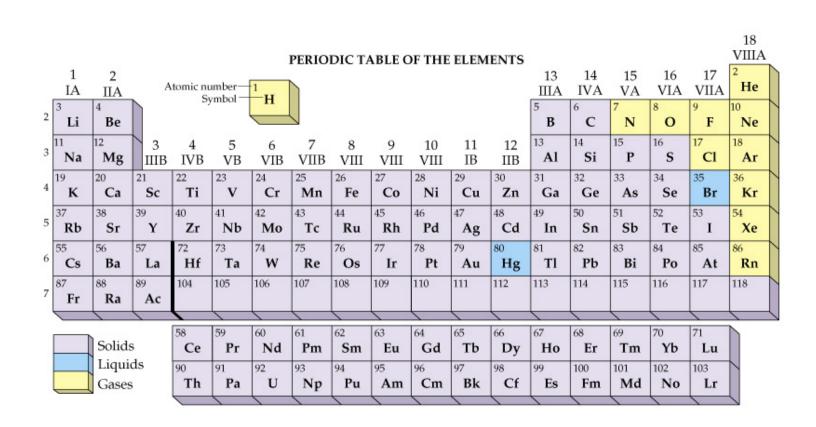
Pure Substances


Pure substances are either elements or compounds.

- An element cannot be decomposed into simpler substances by physical or chemical means.
- A compound is composed of two or more elements always in the same proportion.


Elements

There are about
100 elements.
Their names and
symbols are
shown in the
Periodic Table.


Some common elements →

Elements

States of the Elements

Elements

Writing element symbols:

• First 1-2 distinguishing letters in name used for symbol

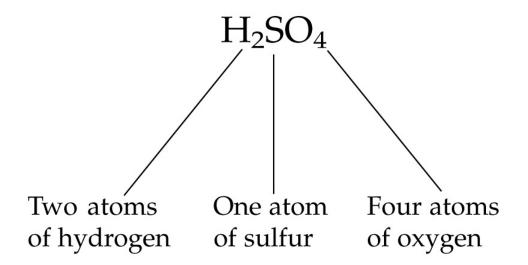
• Only the first letter is capitalized.

Element Symbols Derived from Ancient Names

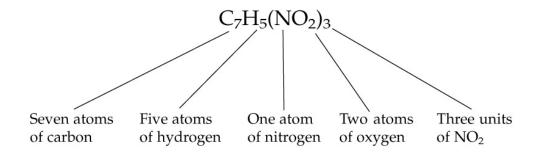
English Name	Symbol	Ancient Name
Antimony	Sb	Stibium
Copper	Cu	Cuprum
Gold	Au	Aurum
Iron	Fe	Ferrum
Lead	Pb	Plumbum
Mercury	Hg	Hydragyrum
Potassium	K	Kallium
Silver	Ag	Argentum
Sodium	Na	Natrium
Tin	Sn	Stannum
Tungsten	W	wolfram

Compounds

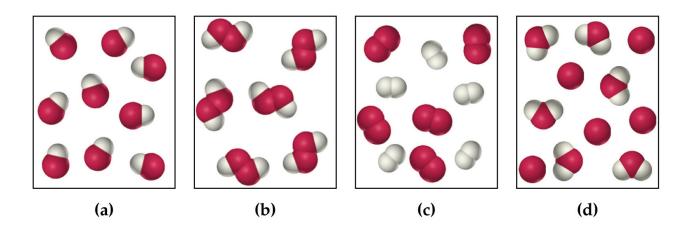
• Compounds can be decomposed into their elements ONLY by a chemical means.


Example: the electrolysis of H_2O

• Compounds always give the same proportion of each element by mass.


Compound Formulas

• A chemical formula expresses the number of atoms of each type of element in the compound. The number of atoms is indicated with a subscript.


Compound Formulas

• Some formulas require parentheses for clarification. The subscript multiplies everything in the parenthesis by that number.

Your Turn

- Which of the following represents a collection of hydrogen peroxide (H₂O₂) molecules?
- H is white and O is red.

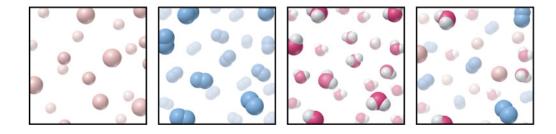
Mixtures

- A mixture has a variable composition
- If the properties of a mixture are not uniform throughout, the mixture is heterogeneous.

Mixtures

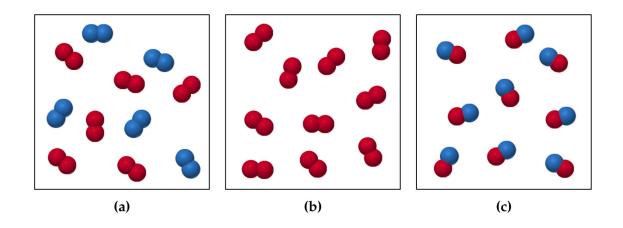
• If the properties are uniform, the mixture is homogeneous, or a solution.

• No ice in the Kool-Aid

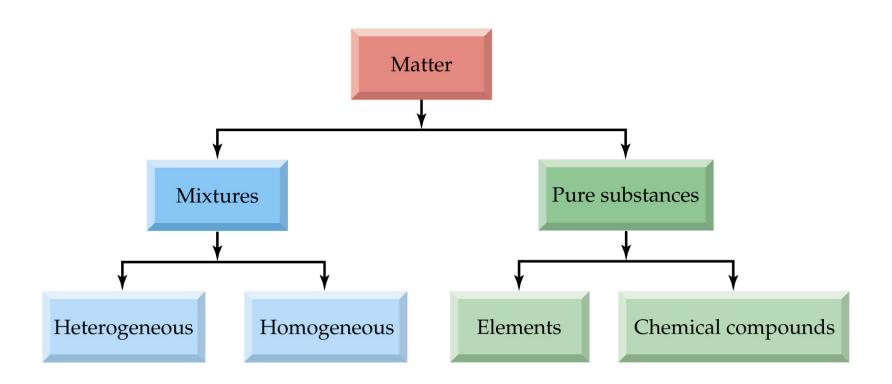


Mixtures

- The pure substances in a mixture can be separated through physical means.
 - Separation of salt from seawater.
 - Distillation of brandy, rum, etc.
 - Separation of fresh brewed coffee from coffee grounds (filtration)


A Microscopic View

- Pure substances are composed of atoms or molecules with fixed numbers of atoms bonded together.
- Mixtures consist of variable numbers of atoms or molecules.



Your Turn

• Which of the following represents a mixture, which a compound, and which an element?

The Classification of Matter

Your Turn Again

- Are the following elements, mixtures or compounds?
 - seawater
 - steel
 - copper
 - marble
 - iron oxide
 - diamond
 - milk