*	1/	1		
Name	K +	Dat	A	Period
TACILIC		Dai		i ciicu

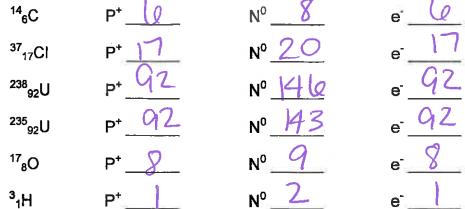
Study Guide: Quiz 4 – Atomic Structure and Isotopes

Part A: Periodic Table and Atomic Structure

- 1. Using your periodic table, draw the "box" for titanium and include all the information that you can get from the periodic table. LABEL **EVERYTHING!!!**
- a. EXPLAIN how to you calculate the number of

 - neutrons: 48-22 = 20
- 2. Fill in the following chart with the missing information

	Charge	Location	Approximate Mass
Protons	_+_	nucleus	
Neutrons	&_	nucleus	
Electrons	7	arkide	


3. Complete the following table for neutral atoms using your periodic table:

Element Name	Symbol	Atomic Number	Atomic Mass	Number of Protons	Number of Electrons	Number of Neutrons		
M NO SEA	Н	1	1			[*] Q		
Vitrogen	N	7	14	7	7	7		
Zinc	301	30	65	30	30	35		
Sulfur	S	16	32	10	16	16		
Chlorine	u	17	35	17	17	18		
Potasiun	K	19	39	19	19	20		
Cobalt	Co	27	59	27	27	32		
That is the overall charge of the nucleus of an atom? Explain WHY: Nucleus has pt & no :- posative chase								

3. Wh:	at is the	overail	charge	of the	nucleus	of an	atom?	
	Evolain	· //////	-				_	

4. What is the overall charge of an atom?
an aton has the same # of e as pt so is newtral.
6. Draw a sketch of a carbon atom using a Bohr Model. <u>MAKE SURE</u> you include the correct number of subatomic particles based on the periodic table. LABEL ALL THE PARTICLES!!!!!
pt-protons No = newtrons = electrons.
7. Describe the difference between J.J. Thompsons "plum pudding" model of the atom and Neils Bohr's "solar system" model of the atom.
Part B: Isotopes Part B: Isotopes Part B: Isotopes
8. Explain the difference between elements and isotopes in a FULL COMPLETE THOUGHT
an element is a pure substance of the smallest piece of identifiable poeter, an isotope is a different smoother form/version of an element (different #15 of rendrows)
9. a. Explain how Carbon – 12, Carbon – 13, and Carbon – 14 are the SAME (Be specific):
they have the same # of pt & e=
b. Explain how they are DIFFERENT (Be specific):
they have different # of no

10. Give the num	nber of protons, ne	utrons, and electrons	using the following atomic symbols:	
¹⁴ ₆ C	P ⁺	N°	e <u>(</u>	
³⁷ 47Cl	p+ 17	Nº 20	9-	

11. What	is the difference	e betwee	n the ave	rage atomic	mass give	n on the	periodi	ic table a	nd the mass	s of
an atom?	the mass	of	one	atom	dep	able	20	the	number	35
of	by 4 Vo	it	has.	the a	vera ge	, at	omic	Ma	71 22	
the	averge ien element from	26	the	masses	of de	all =	the	isote	per of	the
20.30. VV	ien element from hich isotope is	more abu	Hudilli					erage at	omic mass	is

13. There are two different isotopes of copper. The isotope names and symbols are given below:

63
₂₉ Cu (Copper-63) and 65 ₂₉C (Copper-65)

a. Explain why both symbols have 29 as the bottom number:

- b. Explain how the two isotopes are different from each other: 612 has 34 n° the offer has 3 (20° c. Scientists have found the natural abundance of each isotope: 69% copper-63 and 31%
- c. Scientists have found the natural abundance of each isotope: 69% copper-63 and 31% copper-65. Calculate the average atomic mass based on this data. SHOW YOUR WORK!!!!!!!

$$Avg = (0.69)(63) + (0.31)(65) = 63.62$$

d. What if in the universe of Zorg, these isotopes were found in equal percentages. What would the average atomic mass be? WHY?

$$\frac{63+65}{2} = 64$$

17. What is a radioactive isotope? What does radioactive decay mean? AND GIVE THREE EXAMPLES of radioactive isotopes:
er radioactive isotope is unstable radioactive decay
of radioactive isotopes: en radioactive isotope is unstable, radioactive decay is the process of emiting radiation & becoming a stable sortope. 18. What is a stable isotope?
10. What is a stable isotope:
one in which the # of pt 11 nd in the nucleus are Stable & not radioactive.
19. Draw a quick picture of the periodic table and add arrows and lables showing the trend for:
a. ionization energy
increase 1
b. electronegativity
in crease 1
c. atomic radius
c. atomic radius
Fracteage
I had east
20. Describe the trend for ionic radius.
Aton Cation (arion)
the more regative
posative a cation the more regative the anion the larger
the smaller it will

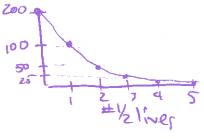
Table 2: Common Radioactive half-lives, their daughter isotopes.

<u>Daughter</u>	Half-life
Nitrogen-14	5730 years
Lead-207	704 million years
Lead-206	4,470 million years
Argon-40	1,280 million years
•	14,010 million years
Strontium-87	48,800 million years
	Lead-207 Lead-206 Argon-40 Lead-208

Total Time = Number of Half-lives × Time for one Half-life

1. A rock contains 25% of its parent material. How many half-lives 100% -> 50% -> 25% have passed?

SHOW YOUR WORK!!!



3. A fossilized tree originally containing 200 grams of Carbon-14 now only contains 25 grams of Carbon-14.

a. How many half-lives have passed?

b. How many years did this take?

3(5730yrs) = 17190 vrs

4. One of the oldest rocks on Earth was found to contain half of the original amount of Uranium-238. U-278

a. How old is the rock?

4,470 my

b. If this rock is the same age as the earth itself, how old is the earth?

3)
$$^{3}H \rightarrow ^{3}He + B$$

į.			