Ch. 10 Quiz Review

10.1 - Moles & Mole Calculations 10.2 - Moles & Mole Calculations 1mol=6.022x1023 particles, I mol = (Molar Mass) g

Name

10.3]- % composition & chemical formulas

% by mass = mass of element (100%)

of element = mass of element in Inol compound

of element = mass of element in Inol compound

of element = mass of element in Inol compound

Molecular Formula = (x) E.F. (X= whole #)

Molecular Formula = (molar mass) E.F.

One mole of a substance contains Avogadro's Number (6.02 x 10²³) of molecules.

How many molecules are in the quantitles below?

- 1. 2.0 moles
- 2. 1.5 moles
- 3. 0.75 mole
- 4. 3.4 x 10²⁶
- 5. 7.5 x 10¹⁹

GRAM FORMULA MASS

Name _____

Determine the gram formula mass (the mass of one mole) of each compound below.

- 1. KMnO₄
- 2. KCl ______
- 3. Na₂SO₄
- 4. Ca(NO₃)₂
- 5. Al₂(SO₄)₃
- 6. (NH₄)₃PO₄

MOLES AND MASS

Name ____

- 1. 25 g of NaCl = ____ mols NaCl
- 2. 125 g of H₂SO₄= _____ Mol s H₂SO₄
- 3. 100. g of KMnO4 = _____ mols KMnO4
- 4. 0.25 moles of KCI = _____ g KCI
- 5. 3.2 moles of CuSO₄=________ CuSO₄

M	5. How many atoms are	H			
W	5. How many atoms are	H			
₹	5. How many atoms are		10		
₹		There in 1.3 \times 10 ²²	molecules of N	IO.2	
₹				21	D 55
31					
8	W)				<
	6. A 5.0 g sample of O_2 is	in a container, #	tow Many mol	of Oz are in	the contain
2		·			
- 1					
111X64	7				
	How many molecules of oxygen?	of O_2 are in the c	ontainer in Prob	olem 6? How m	any atoms
	ermine the percentage			Name	v
Det	ermine the percentage (v.
	rermine the percentage of KMnO ₄ K =				v.
1.	rermine the percentage of KMnO ₄ K = Mn = O =				v.
1.	rermine the percentage of KMnO ₄ K = Mn =				v.
1.	Fermine the percentage of KMnO ₄ K = Mn = O = Al ₂ (SO ₄) ₃				v.

The second secon

4. A compound is 64.9% carbon, 13.5% hydrogen and 21.6% oxygen. Its molecular

mass is 74 g/mol. What is its molecular formula?