

Date: Name

ACT 01 ICOSAHEDRON: The Element Project

Purpose(s):

- 1. Primary:
 - A. To make a solid icosahedron, a polyhedron with 20 faces. Each face will have one property of a single chemical element.
- 2. Secondary:
 - A. The project serves as the first introduction to many of the properties of chemical elements that we'll be covering throughout the year.
 - B. To become the class expert on this one element.
 - C. To help you practice following written directions. Carefully and correctly performing laboratory experiments is essential for successful results. This requires you to follow exactly both oral and written directions. If not, not only might the experiment not work properly but, more importantly, the lab can quickly become unsafe thereby potentially injuring yourself and/or others.

Background:

Throughout the year, we will be studying similarities and differences between various chemical elements. As part of this activity, you will become the class expert on one of the 92 naturally-occurring chemical elements.

Group 1	ĺ				Perio	dic Tab	le of th	ne Elem	ents								Group 18
H Hydrogen 1,01	Group 2					ΕΥ						Group 13	Group 14	Group 15	Group 16	Group 17	Helium 4.00
3	4					Atomic Numb						5	8	2	8	9	10
LI	Be					Element Syn	nbol					В	C	N	0	F	Ne
Lithium E.94	Beryllium 9.01					Name Atomic Mass						Boron 10.81	Carbon 12.01	Nitrogen 14.01	Oxygen 15.00	Fluorine 19.00	Neon 20.18
11	12				1.01	Petallic innes						13	14	16	16	17	18
Na Sodum 72.99	Mg Megnesium 24.31	Group 3	Group 4	Group 5	Group 6	Group 7	Group B	Group 9	Group 10	Oroug 11	Group 12	Al Aluminum 26.98	Si Sices 28.09	P Phosphorus 30.97	Sulfur 30.07	CI Chlorine 35.45	Ar Argon 39.96
19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
K	Ca	Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
otassium 38.10	Calcium 40.08	Scandium 44.96	Ttanium 47.87	Varadium 50.94	Chromium 52.00	Manganese 64.94	90n 56.85	Cobal1 58.53	Nickel 68.69	Copper 63.55	Zinc 65.38	Gallum 69.72	Germanium 72.61	Arsenic 74.92	Selenium 78.96	Bromine 79.90	Krypton 83.80
37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
Rb	Sr	Y	Zr	Nb	Mo	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te	- 1	Xe
Rubidium 85.47	Strontium 87.62	Yttrum 88.91	Zirconium 91.22	Notium 92.91	Malybdenum 95.94	Technetium 97.91	Ruthenium 101.07	Rhodium 102.91	Palladium 106.42	Sher 107.87	Cafmium 112.41	Indium 114.82	Tin 118.71	Artimony 121.76	Tellulum 127.60	ledne 125.90	Xeron 131.29
55	56	57	72	73	74	75	76	77	78	79	80	81	82	83	84	85	- 86
Cs	Ba	La	Hf	Ta	W	Re	Os	lr.	Pt	Au	Hg	TI	Pb	Bi	Po	At	Rn
Cesium 132.91	Barium 137.33	Lanthanum 138.91	Hafrium 178.49	Tantalum 180.95	Tungsten 183.84	Rhenium 186.21	Osmium 190.23	lidium 192.22	Platinum 195.08	Gold 196.97	Mercury 200.59	Thallium 204.38	Lead 207.2	Bismuth 208.98	Potonium 203.98	Astatine 209.99	Radon 222.02
87	88	89	104	105	106	107	108	109				-					
Fr	Ra	Ac	Rf	Db	Sg	Bh	Hs	Mt									
Francium 223.12	Radium 226.03	Actinium 227.03	Rutherfordium 261.11	Dubnium 262.11	Seaborgium 263.12	Bohrium 262 12	Hassium (255)	Meitnerium (266)									

You will be assigned one element to research. Fill out the below report by answering each of the 20 questions. Follow the procedure for making the parts of the icosahedron. Before assembling it, write one property on each face. For example, for property 17, write "Environ. Considerations: "and fill in the property for your element. Then assemble the icosahedron as directed.

Grading:

o Comple	ete tl	ne below i	report			 		5	poi	nts
3.6.3			1.1 .1 11	. 1001	•		C	_		

 \circ Make an icosahedron with the listed 20 items showing one item per face.....5 points

⇒ Report and element ball are due:

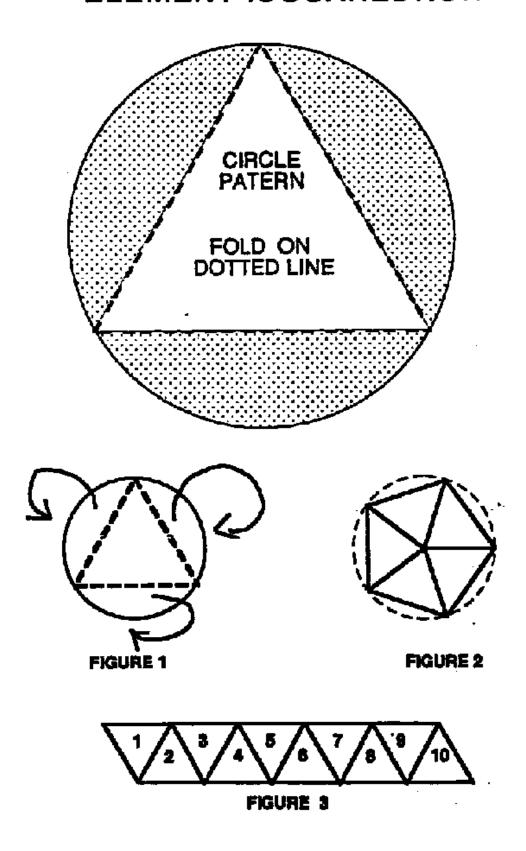
Icosahedron p. 2

Date:	N
Date.	Name:
Date:	14diffe:

ICOSAHEDRON ACTIVITY - REPORT

1.	Your name	
2.	Element name	
3.	Element symbol	
4.		
5.	Number of protons, neutrons, & electrons	
6.	Atomic mass number of the most common isotope	
7.		
8.		
9.	Boiling or melting point	
10.	D. Density	
11.	1. Isotopes	
12.	2. State of matter at room temperature	
13.	3. Source(s) in nature for obtaining the element	
14.	4. Noble-gas electron configuration	
15.	5. Commercial or scientific uses	
	6. Commercial or scientific use (No this is not a mistake, find 2 uses)	
17.	7. Environmental considerations in either producing the element or disposing of it	
18.	3. Atomic radius	
19.	9. Category (halogen, metalloid, etc.)	
20.). Health or safety issues	

Icosahedron p. 3


Preparing an Icosahedron Element Ball

• Use the attached pattern and cut 20 circles from construction paper (top figure on following page).

- Use the triangle pattern to trace and fold the circles into triangles (Figure 1). The folds will end up inside the icosahedron.
- Enter each of the 20 items on a separate face. Color and decorate as you deem appropriate. Pictures and Clip Art may be suitable for some items.
- Select 5 (five) triangles and securely glue (and/or staple) them together in a pie shape pentagon. The shaded parts of the circle should go inside the element ball (Figure 2).
 Repeat this to make the lower section of the element ball.
- Take the remaining 10 triangles and secure them (glue and/or staple) together in a strip (Figure 3).
- Glue and/or staple the ends of the strip together to form a ring. This will form the equator of the element ball.
- Secure one of the pentagons to the top of the ring. Turn over and secure the other pentagon to form the complete element ball. This step requires at least three hands, so ask someone for help.
- Punch a hole in one of the sides and tie on a 30 cm piece of string or yarn. This will be used to hang the element ball.

Icosahedron p. 4

ELEMENT ICOSAHEDRON

